2 resultados para Potentiometry

em Duke University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The de novo design of membrane proteins remains difficult despite recent advances in understanding the factors that drive membrane protein folding and association. We have designed a membrane protein PRIME (PoRphyrins In MEmbrane) that positions two non-natural iron diphenylporphyrins (Fe(III)DPP's) sufficiently close to provide a multicentered pathway for transmembrane electron transfer. Computational methods previously used for the design of multiporphyrin water-soluble helical proteins were extended to this membrane target. Four helices were arranged in a D(2)-symmetrical bundle to bind two Fe(II/III) diphenylporphyrins in a bis-His geometry further stabilized by second-shell hydrogen bonds. UV-vis absorbance, CD spectroscopy, analytical ultracentrifugation, redox potentiometry, and EPR demonstrate that PRIME binds the cofactor with high affinity and specificity in the expected geometry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The difference in electrostatics and reduction potentials between manganese ortho-tetrakis(N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP) and manganese meta-tetrakis(N-ethylpyridinium-3-yl)porphyrin (MnTE-3-PyP) is a challenging topic, particularly because of the high likelihood for their clinical development. Hence, a detailed study of the protolytic and electrochemical speciation of Mn(II-IV)TE-2-PyP and Mn(II-IV)TE-3-PyP in a broad pH range has been performed using the combined spectrophotometric and potentiometric methods. The results reveal that in aqueous solutions within the pH range ∼2-13 the following species exist: (H(2)O)Mn(II)TE-m-PyP(4+), (HO)Mn(II)TE-m-PyP(3+), (H(2)O)(2)Mn(III)TE-m-PyP(5+), (HO)(H(2)O)Mn(III)TE-m-PyP(4+), (O)(H(2)O)Mn(III)TE-m-PyP(3+), (O)(H(2)O)Mn(IV)TE-m-PyP(4+) and (O)(HO)Mn(IV)TE-m-PyP(3+) (m = 2, 3). All the protolytic equilibrium constants that include the accessible species as well as the thermodynamic parameters for each particular protolytic equilibrium have been determined. The corresponding formal reduction potentials related to the reduction of the above species and the thermodynamic parameters describing the accessible reduction couples were calculated as well.